Explainable AI (XAI) is slowly becoming a key component for many AI applications. Rule-based and modified backpropagation XAI approaches however often face challenges when being applied to modern model architectures including innovative layer building blocks, which is caused by two reasons. Firstly, the high flexibility of rule-based XAI methods leads to numerous potential parameterizations. Secondly, many XAI methods break the implementation-invariance axiom because they struggle with certain model components, e.g., BatchNorm layers. The latter can be addressed with model canonization, which is the process of re-structuring the model to disregard problematic components without changing the underlying function. While model canonization is straightforward for simple architectures (e.g., VGG, ResNet), it can be challenging for more complex and highly interconnected models (e.g., DenseNet). Moreover, there is only little quantifiable evidence that model canonization is beneficial for XAI. In this work, we propose canonizations for currently relevant model blocks applicable to popular deep neural network architectures,including VGG, ResNet, EfficientNet, DenseNets, as well as Relation Networks. We further suggest a XAI evaluation framework with which we quantify and compare the effect sof model canonization for various XAI methods in image classification tasks on the Pascal-VOC and ILSVRC2017 datasets, as well as for Visual Question Answering using CLEVR-XAI. Moreover, addressing the former issue outlined above, we demonstrate how our evaluation framework can be applied to perform hyperparameter search for XAI methods to optimize the quality of explanations.
translated by 谷歌翻译
This article develops a convex description of a classical or quantum learner's or agent's state of knowledge about its environment, presented as a convex subset of a commutative R-algebra. With caveats, this leads to a generalization of certain semidefinite programs in quantum information (such as those describing the universal query algorithm dual to the quantum adversary bound, related to optimal learning or control of the environment) to the classical and faulty-quantum setting, which would not be possible with a naive description via joint probability distributions over environment and internal memory. More philosophically, it also makes an interpretation of the set of reduced density matrices as "states of knowledge" of an observer of its environment, related to these techniques, more explicit. As another example, I describe and solve a formal differential equation of states of knowledge in that algebra, where an agent obtains experimental data in a Poissonian process, and its state of knowledge evolves as an exponential power series. However, this framework currently lacks impressive applications, and I post it in part to solicit feedback and collaboration on those. In particular, it may be possible to develop it into a new framework for the design of experiments, e.g. the problem of finding maximally informative questions to ask human labelers or the environment in machine-learning problems. The parts of the article not related to quantum information don't assume knowledge of it.
translated by 谷歌翻译
近年来,在平衡(超级)图分配算法的设计和评估中取得了重大进展。我们调查了过去十年的实用算法的趋势,用于平衡(超级)图形分区以及未来的研究方向。我们的工作是对先前有关该主题的调查的更新。特别是,该调查还通过涵盖了超图形分区和流算法来扩展先前的调查,并额外关注并行算法。
translated by 谷歌翻译